
Stability-based Stopping Criterion for Active Learning

Wenquan Wang Wenbin Cai Ya Zhang∗

Shanghai Key Laboratory of Multimedia Processing and Transmissions
Shanghai Jiao Tong University, Shanghai, China

E-mail: {wangwenquan, cai-wenbin, ya zhang}@sjtu.edu.cn

Abstract—While active learning has drawn broad attention
in recent years, there are relatively few studies on stopping
criterion for active learning. We here propose a novel model
stability based stopping criterion, which considers the potential
of each unlabeled examples to change the model once added
to the training set. The underlying motivation is that active
learning should terminate when the model does not change
much by adding remaining examples. Inspired by the widely
used stochastic gradient update rule, we use the gradient of
the loss at each candidate example to measure its capability to
change the classifier. Under the model change rule, we stop
active learning when the changing ability of all remaining
unlabeled examples is less than a given threshold. We apply
the stability-based stopping criterion to two popular classifiers:
logistic regression and support vector machines (SVMs). It
can be generalized to a wide spectrum of learning models.
Substantial experimental results on various UCI benchmark
data sets have demonstrated that the proposed approach
outperforms state-of-art methods in most cases.
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I. INTRODUCTION

Active learning has been well-motivated in many machine
learning domains [1] [2] [3] where unlabeled examples are
easy to collect but labeling cost is high. A typical active
learning process iterate through the following three steps: 1)
Build a base model with a small initial training set; 2) Use a
certain sampling function to sample from a large unlabeled
pool set and query their labels; 3) Add them to the training
set and retrain the model. This sample selection process is
repeated until a certain stopping criterion is met.

In recent years, most researchers have focused on design-
ing the sampling function such as uncertainty sampling [4]
and query-by-committee [5]. However, a potentially impor-
tant issue of the interactive learning process is the stopping
criterion (SC), i.e., deciding when to stop active learning,
which is a relatively less-researched area. In active learning,
the model performance, which usually means prediction
accuracy, increases gradually at the initial stages. With the
active learning proceeds, the performance of the model starts
to remain stable and cannot be improved considerably at the
latter round of active learning. To avoid the huge annotation
waste on the non-informative examples, it is highly desirable
to define an appropriate stopping criterion to cease the
learning. However, there are relatively few studies on active
learning without having the test set [6], [7], [8].

In this paper, we propose a new stopping criterion for
active learning with model stability, which considers the ca-
pability of each candidate examples to change the classifier.
The main idea is that active learning should stop when the
model cannot be changed too much even with more training
examples. The intuition behind our stability-based method
is that the examples cannot change the current model are
useless for active learning.

The model change is quantified as the difference between
the current model parameters and the new parameters ob-
tained with the accumulated training set. Inspired by the
stochastic gradient update rule, where the model parameters
are updated repeatedly according to the negative (or positive)
gradient of the objective function, we use the gradient of
the loss function at each candidate example to measure its
capability to change the model. Under the model change
principle, we stop active learning when the changing ability
of all remaining unlabeled examples is less than a given
threshold, i.e., the model is stable. In this study, we apply the
stability-based stopping criterion to two popular classifiers:
logistic regression and SVMs. It can be generalized to
other base learners such as linear regression. Extensive
experimental results on various UCI benchmark data sets
have demonstrated that the proposed approach outperforms
state-of-art methods in most cases.

The main contributions of this paper are as follows.
First, We propose a new stopping criterion (SC) framework
with model stability, which considers the capability of each
candidate example to change the classifier. It can be applied
to a wide spectrum of learners. Secondly, under the stability-
based principle, we apply it to two popular classifiers:
logistic regression and SVMs. Substantial empirical results
demonstrate the effectiveness of the proposed methods.

II. RELATED WORK

In this section, we summarize existing studies on stopping
criterion for active learning.

1) Performance-based SC: The general idea behind this
strategy is intuitive and natural, i.e., active learning should
stop when a desired performance threshold is reached [9].
However, the limitation is that an extra test set is needed to
evaluate the model’s performances, involving an extra cost
of labeling.



2) Gradient-based SC: The underlying motivation here
is to stop active learning when more examples do not
contribute more information, e.g., the model has reached
maximum performance or the uncertainty cannot be de-
creased further. Under this principle, Laws and Schutze [10]
presented a novel stopping criterion based on gradient de-
crease with application to named entity recognition. But, it
is non-trivial to accurately estimate the performance without
having a relatively large test set.

3) Confidence-based SC: The intuition behind this s-
trategy is that active learning should be stopped when
the classifier has enough confidence on its classification
w.r.t. the remaining unlabeled data. Zhu et al. [8] proposed
several alternatives to estimate the confidence. The Max-
confidence strategy uses the uncertainty of the most selected
instances as criteria for stopping active learning. The Min-
error method stops active learning when the accuracy of
the current classifier is larger than a given threshold. The
Overall-uncertainty approach stops if the overall uncertainty
value w.r.t. all remaining unlabeled examples is less than
a predefined threshold. The Classification-change strategy
stops active learning when the prediction does not change for
the remaining unlabeled examples between two consecutive
learning cycles. However, these confidence-based stopping
criterions are specific to a set of probabilistic learning
models, which limits their applicability.

Besides the above three frameworks, Schohn and Cohn et
al. [6] presented a specific method for SVMs model, which
suggested that active learning should stop when there are no
unlabeled data points lying in the margin.

III. THE FRAMEWORK OF STABILITY-BASED
STOPPING CRITERION

In machine learning, the ultimate goal is to learn a
classifier with good generalization performance on the fu-
ture unseen data. We believe that the model stability is a
reasonable indicator for stopping the active learning iteration
with the following reasons. First, the model’s generalization
capability on the test set is changed if and only if the
model is changed, and thus the examples that cannot change
the model is actually useless for active learning. Secondly,
as discussed before, active learning should stop when the
performance remains stable, indicating that the remaining
unlabeled examples cannot change the current classifier
considerably. Hence, the model stability based stopping
criterion (denoted as SCMS hereafter) can be formulated as:

SCMS =

{
1, ||θ − θ+|| < λ, ∀x+ ∈ U ,
0, otherwise, (1)

where λ is a predefined constant. θ and θ+ denote the
current model parameter and the updated parameter learned
from the expanded training set, respectively. U stands for
the unlabeled pool set. The active learning process ceases
only if stopping criterion SCMS is equal to 1. The main

problem here is how to calculate the parameter change (i.e.,
||θ − θ+||). In the following, we present our method with
stochastic gradient rule.

We start with the well-known Empirical Risk Minimiza-
tion (ERM) principle. To minimizes the empirical error, a
widely used search method is stochastic gradient update rule,
which updates the parameter θ repeatedly according to the
negative gradient of the loss w.r.t. each training example:

θ ← θ − α∂Lθ(xi)
∂θ

, i = 1, 2, ..., n, (2)

where α is the learning rate.
According to this rule, we approximate the parameter

change as the derivative of the loss at the candidate example
(x+, y+):

||4θ|| = ||θ − θ+|| = ||α∂Lθ(x
+)

∂θ
||. (3)

Putting together (1) and (3), SCMS can be formulated as:

SCMS =

{
1, ||∂Lθ(x+)/∂θ|| < λ, ∀x+,
0, otherwise. (4)

In the above, we suppose that the learning rate α is identical
for each candidate example.

In practice, because the true class label y+ of the example
x+ is not known in advance, we are not able to calculate the
derivative inside (4) directly. Instead, we use the expectation
calculation over all possible labels y+ ∈ Y to estimate the
true parameter change. Our final SCMS can be expressed as:

SCMS =

{
1, Ey+ ||∂Lθ(x+)/∂θ|| < λ, ∀x+,
0, otherwise, (5)

where

Ey+ ||
∂Lθ(x+)

∂θ
|| =

∑
y+∈Y

p(y+|x+)||∂Lθ(x
+)

∂θ
||, (6)

and p(y+|x+) is the conditional probability of label y+

given the example x+ estimated by the current model.

IV. STABILITY-BASED STOPPING CRITERION
FOR CLASSIFICATION

In this section, we apply the proposed framework to
classification tasks. We apply SCMS to logistic regression
and SVMs, two of the most popular classification methods.
While we focus on the binary discrimination problems, it
can be generalized to multi-class problems.

A. Stopping Criterion for Logistic Regression

The logistic regression model can be formulated as:

f(x) =
1

1 + e−θTx
, (7)

where the class labels are represented as Y = {0, 1} and θ
is the parameter vector characterizing the model. The model



is learned by maximizing the log likelihood on a training
set D = {xi, yi}ni=1:

Lθ(D+) =

n∑
i=1

yilogf(xi) + (1− yi)log(1− f(xi)). (8)

Assume a candidate example x+ with a given label y+ is
added to the training set. The log likelihood on the expanded
training set D+ = D ∪ (x+, y+) then becomes:

Lθ(D+) =

n∑
i=1

yilogf(xi) + (1− yi)log(1− f(xi))

+ y+logf(x+) + (1− y+)log(1− f(x+)).
(9)

The derivative of the log likelihood Lθ(x+) at the candidate
example (x+, y+) is calculated as:

∂Lθ(x+)

∂θ
=(y+ − f(x+))x+. (10)

Note that the gradient ascent update rule is used here because
we are maximizing rather than minimizing the objective
function.

Since the true class label y+ is unknown before querying,
we employ bootstrap to create an ensemble B(K) to esti-
mate the prediction distribution y+ ∈ {y1, y2, ..., yK}, and
then use the expectation to approximate the true parameter
change. The relationship between bootstrap and prediction
distribution is formulated as [11]:

Ey+ ||
∂Lθ(x+)

∂θ
|| = 1

K

K∑
k=1

||(y+k − f(x+))x+||. (11)

SCMS for logistic regression can then be expressed as:

SCMS =

{
1, 1

K

∑K
k=1 ||(y

+
k − f(x+))x+|| < λ, ∀x+,

0, otherwise.
(12)

An interpretation behind SCMS is explained as follows.
The parameter change is proportional to the error term (y+−
f(x+)). Hence, if the classifier is good enough to accurately
predict the examples, the changing ability of data instances
will be small, indicating that the model is stable.

B. Stopping Criterion for Support Vector Machines

Support vector machines [12], with its superior properties
of excellent generalization performance, robustness to the
noise, and ability to handle high dimensional data, play
a significant role in the machine learning community. For
SVMs, the class labels are represented as Y = {−1, 1}.
The linear SVM model is represented by a hyperplane:

f(x) = wTx+ b = 0, (13)

where w is the weight vector parameterizing the classifier.
For simplicity, we omit the bias term b throughout this study.

We consider the update rule in active learning. If a
candidate point x+ is incorporated into the training set with

a given label y+, the objective function on the enlarged
training set D+ = D ∪ (x+, y+) then becomes:

min
w

λ

2
‖w‖2 +

n∑
i=1

[1− yiwTxi]+ + [1− y+wTx+]+. (14)

We estimate the effect of adding the new candidate point on
the training loss to approximate the parameter change, and
hence the derivative of the loss at the example (x+, y+) is:

∂Lw(x+)

∂w
=

{
−y+x+, if y+wTx+ < 1,

0, otherwise.
(15)

It shows that the SVM classifier updates its weight solely
on those examples that satisfy the inequality y+wTx+ < 1,
which is straightforward.

Because the true label y+ ∈ {1,−1} of the example x+

is unknown in advance, we therefore rewrite the inequality
constraint y+wTx+ < 1 as |wTx+| < 1. Meanwhile, we take
the expectation over each possible class labels y+ ∈ {1,−1}
to approximate the true parameter change:

Ey+ ||
∂Lw(x+)

∂w
|| =

∑
y+∈Y

p(y+|x+)|| − y+x+||

=
∑
y+∈Y

p(y+|x+)||x+||

= ||x+||. (16)

Therefore, the SCMS for SVM can be reformulated as:

SCMS =

{
1, ||x+|| < λ, ∀x+,
0, otherwise. (17)

A nice interpretation is that the examples within the
margin are the ones having the ability to change SVMs, i.e.,
|wTx+| < 1. Thus, a SVM classifier is sufficiently stable
when there are no data examples lying in the margin, thereby
resulting in a good generalization performance. Also, the
SCMS for SVM strategy can be regarded as a general case
of previous work [6], which stops active learning when there
are no unlabeled points within the margin.

V. EXPERIMENTS

A. Data sets and Experimental Settings

To validate the effectiveness of the proposed strategy, we
use eight benchmark data sets of various domains from UCI
machine learning repository1: Biodeg, Ionosphere, WDBC,
Parkinsons, Letter. Since Letter is a multi-class data set, we
select four pairs of letters (i.e., D-vs-P, E-vs-F, M-vs-N, U-
vs-V) that are relatively difficult to distinguish, and build
a binary-class data set for each pair. Table I presents the
information of the eight binary-class data sets.

We randomly divide each data set into three parts: the
initial labeled training set (denoted as D), the unlabeled pool

1http://archive.ics.uci.edu/ml/



Table I
THE INFORMATION OF EIGHT DATA SETS FROM UCI.

Data sets # Examples # Features Class distribution
Biodeg 1055 41 356/699

Ionosphere 351 34 225/126
WDBC 569 30 357/212

Parkinsons 195 22 147/48
E-vs-F 1543 16 768/755
D-vs-P 1608 16 805/803
M-vs-N 1575 16 792/783
U-vs-V 1577 16 813/764

set (denoted as U), and the test set (denoted as T ). We use
the base labeled set D as the small labeled data set to train
the initial models. The pool set U is used as a large size
unlabeled data set to select the most informative examples,
and the separate test set T is used to evaluate different SC
methods. Further, we randomly split each data set as: D(5%)
+ U(75%) + T (20%). The features are normalized with the
function below:

fNorm
(i,j) =

f(i,j) −mini∈n{f(i,j)}
maxi∈n{f(i,j)} −mini∈n{f(i,j)}

, (18)

where n denotes the number of examples in each data set,
and f(i,j) is the j-th feature from the i-th example.

Two learning models are used as the base learner: logistic
regression and SVM. The active learning algorithm used
here is uncertainty sampling, which is the most widely
employed sample selection method. For logistic regression,
the examples with posterior probabilities closest to 0.5 [13]
are chosen. For SVMs, the examples closet to the separating
hyperplane are queried [14]. 1% instances are selected in
each iteration. We test the method with different threshold
values: λ ∈ {0.5, 1, 2}.

B. Comparison Methods

To test effectiveness of our model stability based stopping
criterion (MS), we compare it with the following three state-
of-art competitors: 1) max-confidence (MC), 2) min-error
(ME), and 3) overall-uncertainty (OU). As suggested in [8],
the initial threshold for these competitors, i.e., MC, ME,
and OU, are set to be 0.5, 0.95, and 0.05, respectively. The
threshold update algorithm [8] is used to refine the initial
thresholds.

Because these methods are specific to probabilistic model-
s, we utilize the sigmoid function to transform SVMs outputs
to posterior probabilities as suggested by [15]:

p(y|x) =
1

1 + exp(wTx)
. (19)

C. Evaluation Metrics

In active learning scenarios, when the model firstly reach-
es the highest performance, it is suggested that the active
learning process can stop. We refer to this checking point as
the Best Stopping Point (BST) for stopping active learning.

In order to accurately achieve the BST, we further perform
the sequential active learning, i.e., only a single example is
added to the training set in each sampling cycle.

With BST, we use the following three metrics to measure
the performance of each stopping criterion.

1) The difference between the BST point and the stopping
point suggested by a certain stopping criterion.

∆point = |ψBST − ψsc| , (20)

where ψBST and ψsc denote the percentage of training
set when active learning stops at the BST and the point
suggested by a stopping criterion, respectively. The smaller
∆point, the better stopping criterion.

2) The difference between the highest performance (ac-
curacy) and the performance obtained at a certain stopping
point with a stopping criterion:

∆Acc = AccBST −Accsc, (21)

where AccBST and Accsc are the classifier’s accuracy per-
formance obtained at the BST and the stopping point of a
stopping criterion, respectively. The smaller ∆Acc, the better
stopping criterion.

3) To further evaluate the effectiveness of stopping crite-
ria, we define a third metric by simultaneously considering
the number of selected instances and the performance im-
provement:

Average improvement =
Acci −Accsc

log(# selected examples)
, (22)

where Acci denotes the accuracy obtained with the initial
labeled set. The reason of using the logarithm function
log(.) lies in the fact that the model’s performance usually
increases in a logarithm-like shape with the number of
selected examples. The larger average improvement, the
better stopping criterion.

D. Comparison Results and Discussions

To gain an overall insight of these four stopping criteria,
we first present the results of ψsc (the percentage of training
set when active learning stops) and Accsc (the accuracy
obtained at the stopping point). Table II and Table III present
the results for logistic regression and SVMs, respectively.
The values having the best performance are highlighted. As
shown in these tables, we see that the number of selected
examples monotonically decrease with the value of the
threshold λ, which agrees with the MS function defined
in Eq.(1).

Table IV
THE NUMBER OF DATA SETS CONSIDERING ∆point , ∆Acc

learn model MS MC ME OU

∆point
Logistic 6 2 5 3
SVMs 6 3 2 6

∆Acc
Logistic 4 2 1 1
SVMs 4 0 1 3



Table II
EXPERIMENTAL RESULTS ON UCI BENCHMARKS FOR LOGISTIC REGRESSION.

Dataset BST MS(λ = 2) MS(λ = 1) MS(λ = 0.5) MC ME OU

Biodeg
ψsc 19.84% 6.06% 12.36% 25.27% 44.50% 52.59% 52.59%
Accsc 89.15% 88.63% 88.63% 87.20% 86.26% 86.73% 86.73%

Ionosphere
ψsc 63.59% 7.12% 8.26% 9.40% 37.50% 50.00% 27.23%
Accsc 87.14% 74.29% 77.14% 78.57% 78.57% 81.43% 77.14%

WDBC
ψsc 61.41% 6.15% 13.53% 13.53% 29.51% 17.75% 34.62%
Accsc 96.46% 85.84% 92.92% 92.92% 93.81% 94.69% 93.81%

Parkinsons
ψsc 11.79% 5.64% 9.74% 11.79% 33.57% 5.64% 31.28%
Accsc 92.31% 71.79% 84.62% 92.31% 92.31% 71.79% 92.31%

D-vs-P
ψsc 8.54% 7.96% 9.40% 9.40% 10.31% 20.92% 10.31%
Accsc 99.07% 98.76% 98.76% 98.76% 98.45% 98.76% 98.45%

E-vs-F
ψsc 37.84% 5.84% 6.85% 11.80% 15.68% 11.80% 11.80%
Accsc 99.35% 85.79% 95.79% 99.03% 99.03% 99.03% 99.03%

M-vs-N ψsc 10.41% 6.03% 8.06% 8.06% 15.17% 15.17% 17.21%
Accsc 97.46% 95.87% 97.14% 97.14% 96.83% 96.83% 96.83%

U-vs-V ψsc 10.41% 6.02% 7.04% 14.14% 10.30% 26.21% 26.21%
Accsc 99.68% 97.15% 97.78% 99.37% 98.42% 99.37% 99.37%

Table III
EXPERIMENTAL RESULTS ON UCI BENCHMARKS FOR SVMS.

Dataset BST MS(λ = 2) MS(λ = 1) MS(λ = 0.5) MC ME OU

Biodeg
ψsc 18.67% 6.07% 37.35% 38.39% 62.37% 32.13% 45.69%
Accsc 88.63% 84.36% 86.73% 86.73% 86.26% 85.31% 85.78%

Ionosphere
ψsc 56.13% 29.91% 29.91% 36.61% 69.80% 18.52% 50.43%
Accsc 90.00% 88.57% 88.57% 88.57% 88.57% 80.00% 88.57%

WDBC
ψsc 6.33% 6.15% 19.86% 19.86% 17.75% 14.59% 13.53%
Accsc 96.46% 95.58% 94.69% 94.69% 94.69% 94.69% 95.58%

Parkinsons
ψsc 14.36% 5.64% 25.13% 26.15% 72.31% 6.67% 29.23%
Accsc 92.31% 74.36% 92.31% 92.31% 87.18% 74.36% 92.31%

D-vs-P
ψsc 8.33% 10.95% 10.95% 16.92% 16.92% 12.94% 8.96%
Accsc 99.07% 98.45% 98.45% 97.83% 97.83% 97.83% 98.45%

E-vs-F
ψsc 9.40% 13.74% 18.60% 18.60% 20.54% 16.86% 15.69%
Accsc 98.71% 98.38% 97.73% 97.73% 97.73% 97.73% 98.38%

M-vs-N
ψsc 8.44% 11.11% 20.25% 20.25% 26.35% 15.17% 13.14%
Accsc 98.10% 97.46% 96.51% 96.51% 96.83% 97.46% 97.46%

U-vs-V
ψsc 7.74% 15.16% 15.16% 15.16% 15.16% 12.11% 7.04%
Accsc 99.37% 99.37% 99.37% 99.37% 99.37% 99.37% 98.10%

In the following, we compare our MS method against
these three competitors with evaluation metrics defined
above (i.e., ∆point, ∆Acc, and Average improvement). For
simplicity, we present the results with the λ = 0.5 for
logistic regression and λ = 2 for SVM, which have shown
to work well in our empirical studies.

1) ∆point and ∆Acc: Similar to previous work [8], we
count the number of data sets on which the stopping criterion
reaches the best (smallest) value of ∆point and ∆Acc.
Table IV shows the results performed on the eight UCI data
sets. MS performs better on most data sets for both logistic
regression and SVM either in terms of ∆point or ∆Acc,
indicating the effectiveness of this method. MC performs
poorly in terms of ∆Acc and ∆point, indicating that OU
tends to stop active learning at the latter iteration with the
goal of achieving a high performance. The performance of
ME is inconsistent. It works well on some data sets, but
performs poorly on the others. This is likely due to the
reason that the expected error estimation is highly correlated
with the characteristics of data sets. OU works well in SVMs

but poorly in logistic regression, which shows that OU more
likely to be a model-specific method that works for margin-
based models.

2) Average improvement: To better test the effectiveness
of the proposed MS strategy, we adopt the average improve-
ment as the third metric by simultaneously considering the
number of selected examples and the accuracy improvement.
In order to make it clear and cross the data sets, we further
normalize the average improvement in [50%, 100%]. Figure
2 and Figure 3 show the comparison results on these eight
UCI benchmarks. MS is observed to perform the best among
these four methods in most cases, demonstrating that MS
stops active learning with high performance and less training
set. Generally, OU works well for SVM but poorly for
logistic regression, which indicates that the uncertainty-
based OU might be more appropriate for the margin-based
classifier. MC and ME performs poorly most of times. A
possible reason can be explained as follows. Both MC and
ME put more weights to achieve the high performance, and
hence a relatively large training set is required.



Figure 1. Normalized average improvement on UCI data sets in logistic
regression.

Figure 2. Normalized average improvement on UCI data sets in SVMs.

VI. CONCLUSIONS

In this paper, we propose a novel model stability based
stopping criterion, which considers the potential capability
of each unlabeled examples to change the model once added
to the training set. Inspired by the widely used stochastic
gradient update rule, we use the gradient of the loss at each
candidate example to measure its capability to change the
classifier. We apply the stability-based stopping criterion
to two popular classifiers: logistic regression and support
vector machines (SVMs). Substantial experimental results
on various UCI benchmark data sets have demonstrated that
the proposed approach outperforms state-of-art methods in
most cases.
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